Christoffel Symbols 231

ثبت نشده
چکیده

We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christooel symbols of a symmetric Ehresmann "-connection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geometry of Free Loop Spaces

We verify the following three basic results on the free loop space LM . (1) We show that the set of all points, where the fundamental form on LM is nondegenerate, is an open subset. (2) The connections of a Fréchet bundle over LM can be extended to S1-central extensions and, in particular, there exist natural connections on the string structures. (3) The notion of Christoffel symbols and the cu...

متن کامل

CONFORMAL GEOMETRY SEMINAR The Poincaré Uniformization Theorem

1.1. Geometry. A covariant derivative on a manifold M is an operator ∇XY on vector fields X and Y satisfying for any smooth function f : (i) ∇fXY = f∇XY ; and (ii) ∇X(fY ) = f∇XY + (∇Xf)Y . If g is a Riemannian metric on M , then there is associated with g a unique covariant derivative ∇ characterized by: (iii) ∇XY −∇YX = [X,Y ]; and (iv) ∇X ( g(Y,Z) ) = g(∇XY, Z) + g(Y,∇XZ). We define the Chri...

متن کامل

Geodesic-invariant equations of gravitation

If we start with Einstein’s beautiful hypothesis that test particles in gravitational field move along geodesic lines of some Riemannian spaces V4, it is natural to expect that the differential equations for finding the metric tensor gαβ(x) for a given distribution of matter also should be invariant under any transformations at which the geodesic equations remain invariant. However, the geodesi...

متن کامل

Generalized Lagrange-Weyl structures and compatible connections

Generalized Lagrange-Weyl structures and compatible connections are introduced as a natural generalization of similar notions from Riemannian geometry. Exactly as in Riemannian case, the compatible connection is unique if certain symmetry conditions with respect to vertical and horizontal Christoffel symbols are imposed. 2000 Math. Subject Classification: 53C60.

متن کامل

Quantum Liouville Theory from a Diffeomorphism Chern-Simons Action

A Chern-Simons action written with Christoffel Symbols has a natural gauge symmetry of diffeomorphisms. This Chern-Simons action will induce a WessZumio-Witten model on the boundary of the manifold. If we restrict the diffeomorphisms to chiral diffeomorphism, the Wess-Zumio-Witten model is equivalent to a quantum Liouville action. email: [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998